Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations
نویسندگان
چکیده
Least-squares finite element methods are motivated, beside others, by the fact that in contrast to standard mixed finite element methods, the choice of the finite element spaces is not subject to the LBB stability condition and the corresponding discrete linear system is symmetric and positive definite. We intend to benefit from these two positive attractive features, on one hand, to use different types of elements representing the physics as for instance the jump in the pressure for multiphase flow and mass conservation and, on the other hand, to show the flexibility of the geometric multigrid methods to handle efficiently the resulting linear systems. With the aim to develop a solver for non-Newtonian problems, we introduce the stress as a new variable to recast the Navier-Stokes equations into first order systems of equations. We numerically solve S-V-P, Stress-VelocityPressure, formulation of the incompressible Navier-Stokes equations based on the least-squares principles using different types of finite elements of low as well as higher order. For the discrete systems, we use a conjugate gradient (CG) solver accelerated with a geometric multigrid preconditioner. In addition, we employ a Krylov space smoother which allows a parameter-free smoothing. Combining this linear solver with the Newton linearization results in a robust and efficient solver. We analyze the application of this general approach, of using different types of finite elements, and the efficiency of the solver, geometric multigrid, throughout the solution of the prototypical benchmark configuration ‘flow around cylinder’.
منابع مشابه
Newton multigrid least-squares FEM for the V-V-P formulation of the Navier-Stokes equations
We solve the V-V-P, vorticity-velocity-pressure, formulation of the stationary incompressible Navier-Stokes equations based on the least-squares finite element method. For the discrete systems, we use a conjugate gradient (CG) solver accelerated with a geometric multigrid preconditioner for the complete system. In addition, we employ a Krylov space smoother inside of the multigrid which allows ...
متن کاملFirst-order System Least Squares for the Navier-stokes Equations
This paper develops a least-squares approach to the solution of the incompressible Navier-Stokes equations in primitive variables. As with our earlier work on Stokes equations, we recast the Navier-Stokes equations as a first-order system by introducing a velocity flux variable and associated curl and trace equations. We show that the resulting system is well-posed, and that an associated least...
متن کاملAnalysis of Velocity-flux First-order System Least-squares Principles for the Navier–stokes Equations: Part I
This paper develops a least-squares approach to the solution of the incompressible Navier–Stokes equations in primitive variables. As with our earlier work on Stokes equations, we recast the Navier–Stokes equations as a first-order system by introducing a velocity-flux variable and associated curl and trace equations. We show that a least-squares principle based on L norms applied to this syste...
متن کاملAnalysis of Velocity-flux Least-squares Principles for the Navier-stokes Equations: Part I
This paper develops a least-squares approach to the solution of the incompressible Navier-Stokes equations in primitive variables. As with our earlier work on Stokes equations, we recast the Navier-Stokes equations as a first-order system by introducing a velocity flux variable and associated curl and trace equations. We show that a least-squares principle based on L2 norms applied to this syst...
متن کاملOn Mass-Conserving Least-Squares Methods
Least-squares variational methods have several practical and theoretical advantages for solving elliptic partial differential equations, including symmetric positive definite discrete operators and a sharp error measure. One of the potential drawbacks, especially in three dimensions, is that mass conservation is achieved only in a least-squares sense, and underresolved solutions are especially ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013